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Energy amplification in channel flows of Oldroyd-B fluids is studied from an input–
output point of view by analysing the ensemble-average energy density associated
with the velocity field of the linearized governing equations. The inputs consist of
spatially distributed and temporally varying body forces that are harmonic in the
streamwise and spanwise directions and stochastic in the wall-normal direction and
in time. Such inputs enable the use of powerful tools from linear systems theory that
have recently been applied to analyse Newtonian fluid flows. It is found that the
energy density increases with a decrease in viscosity ratio (ratio of solvent viscosity to
total viscosity) and an increase in Reynolds number and elasticity number. In most of
the cases, streamwise-constant perturbations are most amplified and the location of
maximum energy density shifts to higher spanwise wavenumbers with an increase in
Reynolds number and elasticity number and a decrease in viscosity ratio. For similar
parameter values, the maximum in the energy density occurs at a higher spanwise
wavenumber for Poiseuille flow, whereas the maximum energy density achieves larger
maxima for Couette flow. At low Reynolds numbers, the energy density decreases
monotonically when the elasticity number is sufficiently small, but shows a maximum
when the elasticity number becomes sufficiently large, suggesting that elasticity can
amplify disturbances even when inertial effects are weak.

1. Introduction
The inception and evolution of instabilities in viscoelastic fluid flows is an active

area of research owing to the rich physical interactions present in and the enormous
practical importance of such flows. Even for the seemingly simple cases of plane
Couette and Poiseuille flows, understanding of the conditions under which instability
occurs remains far less complete relative to that of Newtonian fluids (Morozov &
Saarloos 2005). For plane Couette and Poiseuille flows of Newtonian fluids, it is
now widely recognized that standard linear stability analysis can be misleading
owing to the non-normal nature of the dynamical generator in the linear stability
problem (Trefethen et al. 1993; Grossmann 2000; Schmid & Henningson 2001; Schmid
2007). Linear dynamical systems with non-normal generators can have solutions that
grow substantially at short times, even though they decay at long times. This so-called
transient growth would generally be overlooked in standard linear stability analysis
(which typically focuses on only the least stable eigenvalues), and could put the system
into a regime where nonlinear interactions are no longer negligible. The same issue
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will arise for viscoelastic fluids, making it important to investigate transient growth
phenomena in these flows as well.

Closely related to the issue of transient growth is the question of how sensitive
the linearized equations are to external disturbances, for such disturbances may
produce the initial conditions that lead to transient growth (Farrell & Ioannou 1993;
Bamieh & Dahleh 2001; Schmid 2007). In a recent paper, Jovanović & Bamieh (2005)
applied powerful tools from linear systems theory to study the effect of external
disturbances on plane Couette and Poiseuille flows of Newtonian fluids. To the
linearized Navier–Stokes equations, they added external disturbances in the form of
spatially distributed and temporally varying body forces which were harmonic in
the streamwise and spanwise directions and stochastic in the wall-normal direction
and in time. The equations were then cast into ‘state-space’ form, in which the body
forces are an input and the velocity field is an output, with the two being related
through a transfer function operator. For inputs of the type considered, methods exist
for calculating the ensemble-average energy density associated with the velocity field,
and these were applied to characterize the amplification of disturbances for a wide
range of streamwise and spanwise wavenumbers. In general, it was found that external
disturbances can be considerably amplified, with the most amplified disturbances being
those elongated in the streamwise direction (i.e. streamwise-constant perturbations).
In addition, Jovanović & Bamieh (2005) were able to ascertain the extent to which
individual components of the input vector affect individual components of the output
vector.

The large amplification of external disturbances could be a route through which
the initial conditions needed for transient growth are produced (Farrell & Ioannou
1993; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005). In addition, the large
amplification itself could trigger nonlinear effects, thereby providing a potential route
by which a flow could become unstable to initially small-amplitude disturbances. It
is worthwhile to note that although the external disturbances take the form of body
forces, they can also be interpreted more generally as representing uncertainty in
the mathematical model for the flow system (Bamieh & Dahleh 2001; Jovanović &
Bamieh 2005; Schmid 2007). Such uncertainties may arise in the base flow, boundary
conditions (e.g. wall roughness, non-parallel walls), and constitutive laws, or from the
neglect of certain effects (e.g. nonlinearities, free-stream turbulence).

Numerous investigators have applied standard linear stability analysis to plane
Couette and Poiseuille flows of viscoelastic fluids. The most basic constitutive
equations for viscoelastic fluids are the upper-convected Maxwell (UCM) model
and the Oldroyd-B model. The latter model can be derived from kinetic theory by
considering a dilute suspension of Hookean dumbbells (which represent polymer
molecules) in a Newtonian solvent, and the former model is obtained in the limit
of the solvent contribution to the fluid viscosity being much smaller than that of
the polymer (Bird et al. 1987; Larson 1999). When inertial effects are absent, plane
Couette flow of UCM and Oldroyd-B fluids is stable (Gorodtsov & Leonov 1967;
Wilson, Renardy & Renardy 1999), and no instabilities have been found at finite
Reynolds number (Renardy & Renardy 1986; Kumar & Shankar 2005). In the
Newtonian case, stability is also predicted at all Reynolds numbers (Romanov 1973).
For plane Poiseuille flow, no instabilities are present under creeping-flow conditions
for either Newtonian, UCM or Oldroyd-B fluids (Ho & Denn 1977; Sureshkumar &
Beris 1995). When inertial effects are present, Newtonian fluids can become unstable
above a critical Reynolds number (Orszag 1971). For UCM and Oldroyd-B fluids, the
critical Reynolds number decreases, reaches a minimum, and then begins increasing
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as the elasticity number (ratio of elastic to inertial forces) increases (Ho & Denn
1977; Sureshkumar & Beris 1995). Increasing the relative importance of the solvent
viscosity has a stabilizing effect. Thus, for plane Poiseuille flow, elasticity is initially
destabilizing before becoming stabilizing.

Studies of transient growth phenomena in viscoelastic fluids have also been carried
out. Sureshkumar et al. (1999) performed two-dimensional time-dependent simulations
of creeping plane Couette flow of Oldroyd-B fluids using both the linearized and fully
nonlinear equations. They found that in each case, disturbances decay at long times
but grow at short times, with higher levels of elasticity tending to enhance the
transient growth. Atalik & Keunings (2002) reported the results of two-dimensional
time-dependent simulations of plane Couette and Poiseuille flows of Oldroyd-B
fluids using the fully nonlinear equations. They observed that for Poiseuille flow,
disturbances of sufficiently large amplitude can grow, leading to a time-periodic flow.
When inertial forces dominate elastic forces, the time-periodic states occur above a
critical Reynolds number which decreases and then increases as the elasticity number
increases. Increasing the contribution of the polymer viscosity to the total viscosity
also decreases the critical Reynolds number. When elastic forces dominate inertial
forces, time-periodic states occur if the elasticity number is sufficiently large and the
solvent contribution to the viscosity is below a critical value. In contrast, disturbances
in Couette flow were always found to decay in an oscillatory manner. Kupferman
(2005) found new eigenfunctions of the two-dimensional linearized equations for
plane Couette flow of an Oldroyd-B fluid. Pseudo-spectral analysis was then applied
and revealed that these eigenfunctions exhibit transient growth. Doering, Eckhardt &
Schumacher (2006) demonstrated that at finite Reynolds numbers it is not possible
to exhibit monotonic decay of fluctuations in viscoelastic fluids. This was done
by providing several examples of solutions to the governing equations for plane
Couette flow of an Oldroyd-B fluid that show transient growth. In these examples,
the perturbations to the base state are two-dimensional, and transient amplification
requires the fluid elasticity to be sufficiently large. Finally, we note that recent
weakly nonlinear analyses have predicted that plane Couette and Poiseuille flows
of viscoelastic fluids are unstable to finite-amplitude perturbations even though
standard linear stability analysis predicts that they are stable to small-amplitude
perturbations (Meulenbroek et al. 2004; Morozov & Saarloos 2005). In this case, the
nonlinearities that lead to the finite-amplitude instability could be triggered if the
linearized equations allow perturbations to the flow to grow at short times.

In this paper, we extend the work of Jovanović & Bamieh (2005) to viscoelastic
fluids. We use the Oldroyd-B model and explore the effects of the elasticity number
and viscosity ratio on energy amplification over a range of Reynolds numbers. In
§ 2, we formulate the problem and describe the analysis method. A parametric study
of the ensemble-average energy density associated with the velocity field is given in
§ 3; we find that, as with Newtonian fluids, external disturbances can be considerably
amplified. Since streamwise-constant perturbations are found to be the most amplified
in viscoelastic (as well as Newtonian) fluids, we undertake in § 4 a detailed parametric
study for this case. Finally, we conclude and summarize the important findings in § 5.

2. Problem formulation and analysis method
In this section, we describe how the governing equations can be written in a form

amenable to input–output analysis. We also introduce the notion of ensemble-average
energy density, and briefly discuss a numerical technique for computing this quantity.
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Figure 1. Schematic of the channel-flow geometry.

2.1. Governing equations and geometry

Figure 1 shows a schematic of the channel-flow geometry. For Couette flow, the top
plate moves in the positive x-direction and the bottom plate moves in the negative
x-direction, each with speed Uo. For Poiseuille flow, 2Uo is the centreline velocity.
The height of the channel is 2L, the fluid has relaxation time λ, and the polymer
and solvent viscosities are ηp and ηs , respectively. The dimensionless momentum
conservation, mass conservation, and constitutive equations are

∂t V = −V · ∇V +
1

Re
( − ∇P + β∇2V + (1 − β)∇ · T), (2.1a)

0 = ∇ · V , (2.1b)

∂tT =
1

Wi
(∇V + (∇V )T ) − V · ∇T + T · ∇V + (T · ∇V )T − T

Wi
, (2.1c)

where V =[U V W ]T is the velocity vector, P is the pressure, T is the polymeric
contribution to the stress tensor, Re = ρUoL/(ηs + ηp) is the Reynolds number,
and β = ηs/(ηs + ηp) is the ratio of the solvent viscosity to the total viscosity. The
Weissenberg number Wi, which is the ratio of the fluid relaxation time to the
characteristic flow time, is given by Wi = λUo/L. The above equations have been
non-dimensionalized by scaling length with L, velocity with Uo, polymer stresses with
ηpUo/L, time with L/Uo, and pressure with (ηs + ηp)Uo/L. We note that Wi/Re is
known as the elasticity number, μ, which represents the ratio of the fluid relaxation
time to the characteristic time for vorticity diffusion; this quantity provides a measure
of the strength of elastic forces relative to inertial forces.

Equations (2.1) are linearized by decomposing the flow variables into contributions
from the base state and fluctuations. Keeping terms only to first order in the
fluctuations yields:

∂tv = −v · ∇v − v · ∇v +
1

Re
(−∇p + β∇2v + (1 − β)∇ · τ ) + d,

0 = ∇ · v,

∂tτ =
1

Wi
(∇v + (∇v)T ) − v · ∇τ − v · ∇τ + τ · ∇v + τ · ∇v

+ (τ · ∇v)T + (τ · ∇v)T − τ

Wi
,

where variables with an overbar are base-state variables, v = [u v w]T is the velocity
fluctuation vector, p is the pressure fluctuation, and τ is the polymer stress fluctuation.
To the linearized equations we have added a spatially distributed and temporally
varying body force, d =[d1 d2 d3]

T , where d1, d2, and d3 are the body forces in the
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streamwise (x), wall-normal (y), and spanwise (z) directions, respectively. These body
forces serve as inputs into the linearized system of equations, and we wish to study
their effect on the velocity field.

The unidirectional base flows are found by application of the no-slip and no-
penetration boundary conditions. In Couette flow, we obtain

v = [ U V W ]T = [ y 0 0 ]T , τ =

⎡
⎢⎣

2Wi 1 0

1 0 0

0 0 0

⎤
⎥⎦ ,

and in Poiseuille flow we have

v = [U V W ]T = [1 − y2 0 0]T , τ =

⎡
⎢⎣

8y2Wi −2y 0

−2y 0 0

0 0 0

⎤
⎥⎦ .

2.2. Description of the input–output analysis

The input–output analysis is facilitated by writing the governing equations in terms
of wall-normal velocity (v) and vorticity (ωy) variables (Schmid & Henningson 2001).
In addition, since the base flow is constant in the streamwise and the spanwise
directions, the Fourier transform is applied in these directions. (We use the same
symbol for representing a variable and its Fourier transform.) This leads to the
following representation:

∂tψ(kx, y, kz, t) = [A(kx, kz)ψ(kx, kz, t)](y) + [B(kx, kz)d(kx, kz, t)](y),

v(kx, y, kz, t) = [C(kx, kz)ψ1(kx, kz, t)](y),

}
(2.2)

where kx and kz are the streamwise and spanwise wavenumbers, ψ = [ψT
1 ψT

2 ]T ,

ψ1 = [v ωy]
T , and ψ2 = [τxx τyy τzz τxy τxz τyz]

T , with τij denoting the components of
τ . The operator A has the following form:

A =

[
A11 A12

A21 A22

]
, (2.3)

where the operator blocks in (2.3) are defined in the Appendix. It should be noted
that in Newtonian fluids, there is only one block, A11, and in the limit β → 1, A11

in (2.3) simplifies to the dynamical generator in familiar Orr–Sommerfeld and Squire
equations of Newtonian fluids. The operator A12 describes how polymer stresses enter
into the equations governing the evolution of wall-normal velocity and vorticity. On
the other hand, the operators A21 and A22 appear in the constitutive equation, where
A21 acts on the wall-normal velocity/vorticity and A22 acts on the polymer stress.
Furthermore, B is an 8 × 3 matrix of operators, which we denote as B = [BT OT ]T ,

where O is a 6 × 3 null matrix. We note that operator B describes how forcing enters
the Orr–Sommerfeld and Squire equations of viscoelastic channel flows, and operator
C in (2.2) captures a kinematic relationship between the wall-normal velocity/vorticity
vector ψ1 and velocity fluctuation vector v. The definitions of these two operators are
provided in the Appendix (see Jovanović & Bamieh (2005) for additional details).

System of equations (2.2) is referred to as a state-space representation in the control
literature (Curtain & Zwart 1995), where d is the disturbance or input, ψ is the state of
the system, and v is the system response or output. In the state-space formulation, the
following boundary conditions are imposed on the wall-normal velocity and vorticity
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variables:

v(kx, ±1, kz, t) = ∂yv(kx, ±1, kz, t) = ωy(kx, ±1, kz, t) = 0. (2.4)

These boundary conditions come from the no-slip and no-penetration requirements
on the velocity field components. It is worth mentioning that no boundary conditions
on the polymer stresses are required since in (2.2) there are no terms involving
derivatives of these stresses with respect to y.

For disturbances harmonic in x and z and random (zero-mean white noise) in y

and t , the energy amplification for a given kx and kz can be determined by calculating
the H2 norm, whose square is also known as the ensemble-average energy density
(herein referred to as energy density) (Farrell & Ioannou 1993). The energy density
of a stochastic velocity field is determined by

E(kx, kz) = lim
t→∞

(
1

8

∫ 1

−1

E(v∗(kx, y, kz, t)v(kx, y, kz, t)) dy

)
,

where asterisk denotes complex-conjugate transpose of vector v, and E denotes
ensemble averaging (McComb 1991), that is

E (v(·, t)) = lim
T → ∞

1

T

∫ T

0

v(·, t + τ ) dτ.

We note that the stochastic character of velocity field v arises due to the randomness
of input field d (Farrell & Ioannou 1993).

The energy density can also be defined in terms of the frequency response operator,
H (kx, kz, ω), where ω is a temporal frequency. For any triplet (kx, kz, ω), the frequency
response is an operator (in the wall-normal direction) that maps the spatio-temporal
Fourier transform of the forcing field to the spatio-temporal Fourier transform of the
velocity field, i.e.

v(kx, y, kz, ω) = [H (kx, kz, ω)d(kx, kz, ω)](y).

The energy density is then obtained by averaging over the wall-normal direction and
time:

E(kx, kz) =
1

2π

∫ ∞

−∞
trace(H (kx, kz, ω)H ∗(kx, kz, ω)) dω,

where H ∗ denotes the adjoint of operator H . The averaging in y is obtained by
computing the Hilbert–Schmidt norm of operator H , ‖H‖2

HS = trace(HH ∗), and
averaging in time is obtained by integration over temporal frequencies.

It is essential to note that the energy density can be evaluated without doing an
explicit temporal-frequency integration (Zhou, Doyle & Glover 1996); namely, this
quantity is determined by

E(kx, kz) = trace(X11(kx, kz)C
∗(kx, kz)C(kx, kz)),

where X11 is the 11-block of operator X, which is given by:

X =

[
X11 X12

X∗
12 X22

]
.

The self-adjoint operator X is partitioned conformably with the elements of operator A
and it can be determined by solving the following operator Lyapunov equation
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(Farrell & Ioannou 1993; Bamieh & Dahleh 2001; Jovanović & Bamieh 2005):

A(kx, kz)X(kx, kz) + X(kx, kz)A
∗(kx, kz) = −B(kx, kz)B

∗
(kx, kz).

The elements of X are related to correlation functions involving the elements of
ψ (Bamieh & Dahleh 2001); namely, the steady-state covariance operator of ψ i with
itself is given by Xii , and the steady-state covariance operator of ψ1 with ψ2 is given
by X12. We refer the reader to the Appendix for the definitions of the adjoints of
operators A, B, and C.

2.3. Numerical method

From the above Lyapunov equation, a system of eight operator-valued equations (in
y) can be generated. These are discretized using a Chebyshev collocation technique so
that all the variables are approximated by a set of Chebyshev polynomials that satisfy
the boundary conditions (2.4) (Canuto et al. 1988). The matrix representation for all
the operators can be obtained without numerical integration as there is a recursive
relationship between the Chebyshev polynomials and their derivatives (Boyd 1989),
which is implemented using a public-domain Matlab subroutine (Weideman & Reddy
2000). This effectively replaces the eight operator-valued equations with 8N linear
algebraic equations, where N denotes the number of collocation points. The algebraic
Lyapunov equations are solved using the lyap subroutine in Matlab. All the results
presented in this study were checked for convergence by varying the number of
collocation points. In most of the cases, between 30 to 50 collocation points were
found to be sufficient to obtain accurate results. At the higher Reynolds numbers and
elasticity numbers investigated, approximately 100 collocation points were needed
since under these conditions there are larger gradients in the solution near the
channel walls. The results were also verified by comparing with the known results
in the Newtonian limit (Jovanović & Bamieh 2005). In all of the plots presented in
§ 3, 50 × 30 grid points were used in the (kx, kz)-space. The streamwise and spanwise
wavenumbers are varied in a logarithmic scale between 10−4 and 3.02 (for kx) and
between 10−2 and 5 (for kz).

3. Parametric behaviour of energy amplification
Here, we study the effect of viscosity ratio and elasticity number on the ensemble-

average energy density. The energy density quantifies the aggregate effect of
disturbances in all three spatial directions on all three velocity components.

We first examine the effect of viscosity ratio on the energy density. It should be noted
that an Oldroyd-B fluid is equivalent to an UCM fluid for β → 0 and a Newtonian
fluid for β → 1. Figure 2 shows the energy density for Re = 1000, μ = 10, and β = {0.1,
0.5, 0.9} in both Couette and Poiseuille flows. In all cases, the energy density peaks
in a narrow region near kx ≈ 0, indicating the dominance of streamwise-elongated
structures (Schmid & Henningson 2001). For μ = 10, as β increases these peaks shift
from kx = 0 to small non-zero values of kx , indicating the larger prominence of weakly
oblique velocity perturbations. Furthermore, with an increase in β , significant energy
amplification is observed for a wider range of kx and the maximum in energy density
shifts to smaller values of kz, suggesting that the dominant flow structures become
more spread in the z-direction. We also note that the maximum energy amplification
decreases with an increase in β (i.e. as the Newtonian limit is approached). In
both Couette and Poiseuille flows, there is an order-of-magnitude difference in the
maximum energy density between β = 0.1 and β = 0.5, as well as for β = 0.5 and
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Figure 2. Ensemble-average energy density, (1/2) log10(E(kx, kz)), for Re =1000 and µ= 10
in both Couette and Poiseuille flows.
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β = 0.9. The maximum in energy density is located at a higher kz for Poiseuille flow
compared to Couette flow, but the maximum value of the energy density is smaller
in this case.

Similar trends are observed at Re = 10, as shown in figure 3. Here, the maximum
energy density is located at larger values of kx than for Re =1000, indicating the
increasing importance of oblique perturbations (kx =O(1), kz =O(1)). In general,
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lowering Re leads to smaller energy amplification, broadens the range of (kx, kz) over
which there is significant energy amplification, and leads to flow structures that have
larger spanwise length scales (i.e. smaller values of kz).

Figure 4 shows the energy density in both Couette and Poiseuille flow for Re = 1000,
β = 0.1, and μ = {0.1, 1, 10}. It is clear from the plots that the magnitude of the
maximum energy density decreases with a decrease in μ and is smaller for Poiseuille
flow than for Couette flow. For this particular set of parameters, the location of
maximum energy amplification does not depend on μ (i.e. it takes place at kx = 0,
kz = O(1)). Typically, the maximum shifts to smaller values of kz with a decrease
in μ, indicating that the dominant flow structures have larger length scales in the
z-direction. Also, at smaller μ values, significant energy amplification is observed for
a wider range of streamwise and spanwise wavenumbers.

The results of this section clearly illustrate that increasing the fluid elasticity
through either the polymer contribution to the viscosity or the elasticity number
enhances energy amplification. The disturbances that are most amplified tend to be
streamwise-elongated, with elasticity acting to reduce their spanwise length scale.

4. Energy amplification of streamwise-constant perturbations
Since in most cases the streamwise-elongated perturbations experience the largest

energy amplification, we focus here on the case where kx = 0 and perform a detailed
parametric study exploring the effects of Re, μ, and β .

4.1. Effect of Re

Figure 5 shows the dependence of the energy density on kz for different Reynolds
numbers in both Couette and Poiseuille flows. Although the plots are presented
for a particular set of β and μ values, the trends are qualitatively similar for
other values of β and μ. In both Couette and Poiseuille flows, the energy density
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Figure 5. Variation of E(kz) with kz for streamwise-constant perturbations at different Re
for β = 0.1 and μ= 10: (a) Couette flow; (b) Poiseuille flow.

monotonically decreases with an increase in kz at very small values of Re. At
higher Reynolds numbers, the energy density shows a maximum in kz, indicating
that the amplification is largest for non-zero spanwise wavenumber disturbances.
In channel flows of Newtonian fluids, the energy amplification at kx = 0 scales as
f (kz)Re + g(kz)Re3 (Bamieh & Dahleh 2001; Jovanović & Bamieh 2005), where the
f and g functions are Re-independent. We have utilized frequency response analysis
to establish a similar scaling law for viscoelastic fluids (Hoda, Jovanović & Kumar
2008); namely, the energy amplification of streamwise-constant channel flows of
Oldroyd-B fluids is given by q(kz, β, μ)Re + r(kz, β, μ)Re3 where functions q and r

do not depend on the Reynolds number. For Newtonian fluids, vortex stretching

(which is proportional to U
′
∂zv) is responsible for the energy amplification (Landahl

1975; Butler & Farrell 1992). Jovanović & Bamieh (2005) showed analytically that
the singular values of the frequency response operator scale as Re2 only when the
vortex stretching term is non-zero (otherwise the Re2 term is absent and they scale as
Re); it is this scaling that gives rise to Re3 scaling of the energy density (Jovanović &
Bamieh 2005). We have shown that even in the case of Oldroyd-B fluids, the vortex
stretching term contributes to the Re2-scaling of the singular values of the frequency
response operator (Hoda et al. 2008). This demonstrates the importance of the vortex
stretching mechanism (Landahl 1975) in viscoelastic fluids.

4.2. Effect of β

The variation in the energy density with kz at different β and μ for Re =1000 is shown
in figure 6. The observation that the energy amplification increases as β decreases
is consistent with observations of standard two-dimensional linear stability analysis.
When comparing the stability characteristics of the Oldroyd-B and UCM models
for plane Poiseuille flow, Sureshkumar & Beris (1995) found that the presence of
non-zero solvent viscosity has a pronounced stabilizing effect on the flow.

The dependence of the energy density on β can be better understood by
interrogating system (2.2). We identified three terms where the viscosity ratio appears
as a prefactor. In the operator A11, defined in the Appendix, β is a prefactor to the
term �−1�2v, which is the viscous stress term, and the term �η, which is the vorticity
diffusion term. The viscosity ratio also appears as a prefactor, (1 − β), in the operator
A12, defined in the Appendix. Here, we label the viscosity ratio in front of the viscous
stress term and vorticity diffusion term as β1 and β2, respectively, and the prefactor
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Figure 6. Variation of E(kz) for streamwise-constant perturbations at different values of β
for Re = 1000 in both Couette and Poiseuille flows.

1 − β in the operator A12 as β3. Keeping β2 and β3 fixed, we found that increasing
(decreasing) β1 decreases (increases) the energy density for all non-zero kz, suggesting
that the viscous stress term suppresses disturbances. By analysing the effect of β2 in a
similar way, it is found that the vorticity diffusion term also suppresses disturbances.
It should be noted that the energy density shows a similar dependence on the viscous
stress and vorticity diffusion terms even at different μ and Re. The relative importance
of these two terms was probed by comparing the variation in the energy density for a
proportionate change in the prefactor of the viscous stress and the vorticity diffusion
terms. For any elasticity number, the viscous stress term plays a dominant role in
suppressing disturbances at higher Re, while at lower Re, the vorticity diffusion term
is the dominant partner. The crossover occurs at Re ≈ 100 for Poiseuille flow and
Re ≈ 20 for Couette flow.

The effect of β3 on the energy density is more subtle. At smaller β1 and β2, a
decrease (increase) in β3 increases (decreases) the energy density for all kz, suggesting
that the polymeric stresses are suppressing the disturbances. At higher β1 and β2, the
trend is reversed, and the values of β1 and β2 at which this reversal occurs depend
upon μ and Re.

4.3. Effect of μ

Figure 7 shows the effect of the elasticity number on the energy amplification for
β = 0.1 at several different Reynolds numbers. The general trends for other values of
β and Re are similar. The increase in the energy amplification with μ is consistent
with results of standard two-dimensional linear stability analyses for Poiseuille flow,
which show that increasing the elasticity number initially lowers the critical Re at
which instability occurs (Ho & Denn 1977; Sureshkumar & Beris 1995). However,
whereas the linear stability analysis predicts stabilization beyond a critical value of
the elasticity number, our analysis shows that energy amplification always increases
with μ.
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Figure 7. Variation of E(kz) at different values of μ for kx = 0 and β = 0.1 in both Couette
and Poiseuille flows.

The most striking feature of figure 7 is the observation that increasing μ beyond
a certain value can cause the energy density to exhibit a maximum with respect
to kz. This is especially pronounced at low Reynolds numbers, where the energy
density monotonically decreases for sufficiently small μ. This indicates that elasticity
can produce considerable energy amplification in very viscous flows, with the most
amplified disturbances having O(1) spanwise wavenumber. Inspection of the terms
in (2.2) shows that the elasticity number appears as a prefactor in front of the
velocity gradient term, (∇v + (∇v)T ), and the polymeric stress terms, τ . We looked at
the importance of these contributions and found that at intermediate and small β ,
the velocity gradient term suppresses disturbances, while the polymeric stress terms
showed a complicated dependence on μ, suggesting that both terms are important.

4.4. Comparison: Couette versus Poiseuille flow

Figure 8 compares the energy amplification in Couette and Poiseuille flows with
Re = 1000 and μ = 10. Couette flow always exhibits a higher energy density, and the
relative difference is largest for β = 1 (Newtonian case). It is also found that the
relative difference decreases with a decrease in Re and β as well as with an increase
in μ. For Newtonian fluids, the difference in the energy density in the two cases
is due to the vortex stretching term; in Couette flow, the vortex stretching term is
independent of y, while for Poiseuille flow it depends linearly on y. However, owing
to the strong coupling between the various terms that is present in the viscoelastic
case, we were unable to clearly identify terms which could explain the difference in
the energy density between the two cases.

5. Conclusions
We have considered the problem of energy amplification in channel flows of

Oldroyd-B fluids. By focusing on disturbances that enter the linearized governing
equations in the form of body forces that are harmonic in the streamwise and
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Figure 8. Comparison of the energy density in Couette and Poiseuille flows at different
values of β for Re = 1000, μ= 10.

spanwise directions and stochastic in the wall-normal direction and in time, we have
been able to apply powerful tools from linear systems theory to characterize the
behaviour of the ensemble-average energy density. Our results show that the presence
of fluid elasticity can produce significant energy amplification relative to Newtonian
fluids. This was observed both when varying the polymer-to-solvent viscosity ratio
and the elasticity number. The most amplified disturbances tend to be elongated
in the streamwise direction, and fluid elasticity tends to decrease the spanwise
length scale. Determining the mechanism responsible for the energy amplification is
challenging owing to the complex coupling of terms in the governing equations, and
our results suggest that the interplay between viscous and elastic stresses plays a key
role.

One of the most notable findings of this paper is the observation that elasticity
can produce considerable energy amplification even when inertial effects are relatively
weak. This energy amplification may then serve as a route through which channel
flows of viscoelastic fluids become unstable. The large amplification could set up the
initial conditions needed for transient growth, or could itself trigger nonlinear effects.
Our results, which indicate that the most amplified disturbances are three-dimensional
in nature, significantly augment prior work on viscoelastic channel flows, which has
primarily focused on two-dimensional disturbances. The results also extend the work
of Jovanović & Bamieh (2005) on Newtonian fluids to the viscoelastic case. We note
that although we have considered disturbances in the form of body forces, the results
raise the possibility that viscoelastic channel flows may be exceedingly sensitive to
other types of disturbances. Future work on the stability of viscoelastic channel flows
should thus consider the roles of external disturbances and three-dimensionality, as
well as the mechanisms of energy amplification.

The work of N.H. and S.K. was partially supported by the Donors of The
American Chemical Society Petroleum Research Fund. The work of M.R. J. was
partially supported by the National Science foundation under CAREER Award
CMMI-06-44793.
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Appendix. Operators in the governing equations
The components of operator A, defined in equation (2.3), are:

A11 =

[
(β/Re)�−1�2 − ikx�

−1U� + ikx�
−1U

′′
0

−ikzU
′

(β/Re)� − ikxU

]
,

A12 =
1 − β

Re

[
�−1 0
0 I

]
A12,

A21 =
1

k2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11
21 a12

21

a21
21 a22

21

a31
21 a32

21

a41
21 a42

21

a51
21 a52

21

a61
21 a62

21

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

Di 0 0 2U
′

0 0
0 Di 0 0 0 0
0 0 Di 0 0 0

0 U
′

0 Di 0 0

0 0 0 0 Di U
′

0 0 0 0 0 Di

⎤
⎥⎥⎥⎥⎥⎥⎦

,

where k2 = k2
x + k2

z , i =
√

−1, �= ∂yy − k2 with Dirichlet boundary conditions,
�2 = ∂yyyy − 2k2∂yy + k4 with both Dirichlet and Neumann boundary conditions,

U
′
=dU (y)/dy, and U

′′
= d2U (y)/dy2. The diagonal elements of A22, are given by

Di = − ikxU − 1/Wi . Operator A12 is defined as

A12 =

[
k2

x∂y −k2∂y k2
z ∂y −ikx(k

2 + ∂yy) 2kxkz∂y −ikz(k
2 + ∂yy)

−kxkz 0 kxkz ikz∂y k2
x − k2

z −ikx∂y

]
.

The components of operator A21 are:

a11
21 = −2

(
k2

x

Wi
∂y + k2

xτ xx∂y − ikxτ xy∂yy

)
− k2τ ′

xx,

a12
21 = 2

(
kxkz

Wi
+ kxkzτ xx − ikzτ xy∂y

)
,

a21
21 = k2

(
2

Wi
∂y + 2ikxτ xy

)
, a22

21 = 0,

a31
21 = −2k2

z

Wi
∂y, a32

21 = −2kxkz

Wi
,

a41
21 =

ikx

Wi
∂yy − k2

xτ xy∂y + k2

(
ikx

Wi
+ ikxτ xx + τ xy∂y

)
− k2τ ′

xy,

a42
21 = − ikz

Wi
∂y + kxkzτ xy,

a51
21 = −2kxkz

Wi
∂y − kxkzτ xx∂y + ikzτ xy∂yy, a52

21 =
k2

z − k2
x

Wi
− k2

xτ xx + ikxτ xy∂y,

a61
21 =

ikz

Wi
(k2 + ∂yy) − kxkzτ xy∂y, a62

21 =
ikx

Wi
∂y − k2

xτ xy,

where τ ′
xx = dτ xx(y)/dy.
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Operators B and C are given by

B =

[
−ikx�

−1∂y −k2�−1 −ikz�
−1∂y

ikz 0 −ikx

]
, C =

1

k2

⎡
⎢⎣

ikx∂y −ikz

k2 0

ikz∂y ikx

⎤
⎥⎦ ,

where �−1 is the inverse of the Laplacian operator.
The adjoints of operators A11, A12, A21, and A22 are determined using the following

relations:

〈ψ1, A11ψ1〉e = 〈A∗
11ψ1, ψ1〉e,

〈ψ1, A12ψ2〉e = 〈A∗
12ψ1, ψ2〉2,

〈ψ2, A21ψ1〉2 = 〈A∗
21ψ2, ψ1〉e,

〈ψ2, A22ψ2〉2 = 〈A∗
22ψ2, ψ2〉2,

where the inner product 〈·, ·〉e determines the kinetic energy density of a harmonic
perturbation and is related to the standard L2 norm through (Butler & Farrell 1992)

〈ψ1, ψ1〉e = 〈ψ1, Qψ1〉2,

where Q is a block diagonal linear operator given by

Q =
1

k2

[
−� 0

0 I

]
.

The adjoints of the components of A are determined using the above expression and
are

A∗
11 =

[
(β/Re)�−1�2 + ikx�

−1U� + 2ikx�
−1U

′
∂y −ikz�

−1U
′

0 (β/Re)� + ikxU

]
,

A∗
12 =

1 − β

Re

1

k2
A

∗
12,

A∗
21 =

[
a∗11

21 a∗12
21 a∗13

21 a∗14
21 a∗15

21 a∗16
21

a∗21
21 a∗22

21 a∗23
21 a∗24

21 a∗25
21 a∗26

21

]
,

A∗
22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D∗
i 0 0 0 0 0

0 D∗
i 0 U

′
0 0

0 0 D∗
i 0 0 0

2U
′

0 0 D∗
i 0 0

0 0 0 0 D∗
i 0

0 0 0 0 U
′

D∗
i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where D∗
i = ikxU − 1/Wi and the operator A

∗
12 is

A
∗
12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k2
x∂y −kxkz

−k2∂y 0

k2
z ∂y kxkz

−ikx(k
2 + ∂yy) ikz∂y

2kxkz∂y k2
x − k2

z

−ikz(k
2 + ∂yy) −ikx∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The components of the operator A∗
21 are:

a∗11
21 = −2�−1

(
k2

x

Wi
∂y + k2

x(τ xx∂y + τ ′
xx) − ikx(τ xy∂yy + τ ′′

xy + 2τ ′
xy∂y)

)
+ k2�−1τ ′

xx,

a∗12
21 = �−1k2

(
2

Wi
∂y + 2ikxτ xy

)
,

a∗13
21 = −�−1 2k2

z

Wi
∂y,

a∗14
21 = �−1

(
ikx

Wi
∂yy − k2

x(τ xy∂y + τ ′
xy) + k2

(
ikx

Wi
+ ikxτ xx + τ xy∂y + τ ′

xy

))
+ k2�−1τ ′

xy,

a∗15
21 = −�−1

(
2kxkz

Wi
∂y + kxkz(τ xx∂y + τ ′

xx) − ikz(τ xy∂yy + τ ′′
xy + 2τ ′

xy∂y)

)
,

a∗16
21 = �−1

(
ikz

Wi
(k2 + ∂yy) − kxkz(τ xy∂y + τ ′

xy)

)
,

a∗21
21 = 2

(
kxkz

Wi
+ kxkzτ xx − ikz(τ xy∂y + τ ′

xy)

)
,

a∗22
21 = 0, a∗23

21 = −2kxkz

Wi
, a∗24

21 = − ikz

Wi
∂y + kxkzτ xy,

a∗25
21 =

k2
z − k2

x

Wi
− k2

xτ xx + ikx(τ xy∂y + τ ′
xy), a∗26

21 =
ikx

Wi
∂y − k2

xτ xy.

This operator simplifies in the case of Couette flow, as the base-state stresses (τ xx and
τ xy) are independent of y. Also, since the base-state velocity is a linear function of
y, its first derivative is a constant and the second derivative is zero. The adjoints of
operators B and C are determined from

〈ψ1, Bd〉e = 〈B∗ψ1, d〉2, 〈v, Cψ1〉2 = 〈C∗v, ψ1〉e,

which yields

B∗ =
1

k2

⎡
⎢⎣

ikx∂y −ikz

k2 0

ikz∂y ikx

⎤
⎥⎦ , C∗ =

[
−ikx�

−1∂y −k2�−1 −ikz�
−1∂y

ikz 0 −ikx

]
.

Based on this, it follows that BB∗ = I and C∗C = I, which is important for the energy
density computations.
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